Recovery Management

Introdi

» Failure Cl

» Storage S

» Recovery

» Log-Based

» Shadow Pagi

» Recovery With

» Buffer Manageme

» Failure with Loss of ‘
» Advanced Recovery Techniqu
» ARIES Recovery Algorithm
» Remote Backup Systems

Fai

» Transactio

- Logical erra
internal errc

- System erro
active transac
» System crash: «
software failure

- Fail-stop assumB
assumed to not be

Database systems have
corruption of disk data

» Disk failure: a head crash or si
destroys all or part of disk storage

- Destruction is assumed to be detectable: disk drives use
checksums to detect failures

Recovery Algorithms

» Recovery algorithms are techniques to ensure
database consistency and transaction
atomicity and durability despite failures
> Focus of this chapter

» Recovery algorithms have two parts

1. Actions taken during normal transaction
processing to ensure enough information exists to
recover from failures

2. Actions taken after a failure to recover the
database contents to a state that ensures
atomicity, consistency and durability

» Volatile s
- does not
- examples

» Nonvolatil

> survives syst

- examples: disk, t
non-v

» Stable storage: !
- a mythical form of storage that survives all failures
- approximated by maintaining multiple copies on

Stable

Maintain multi
© copies can
flooding.

Failure during
transfer can res

- Successful com

- Partial failure: de

- Total failure: destin
Protecting storage me
solution):

- Execute output operation as fo

Write the information onto the fir

When the first write successfully completes, write the same information
onto the second physical block.

The output is completed only after the second write successfully
completes.

(Cont)

Protecting s
transfer (cc

Copies of ¢

output oper

1. First find
Expensi
block.
Better solu

Record in
volatile RA

Use this infor
inconsistent, and ¢

Used in hardware RAID

2. If either copy of an inconsi ave
an error (bad checksum), overwrite it by the other copy. If
both have no error, but are different, overwrite the second

block by the first block.

Physical bloc

Buffer block
main memo

Block moven
initiated thrao
 input(B) tran

- output(B) trans
the appropriate

Each transaction

local copies of all d

it are kept.

- T/s local copy of a data ite

We assume, for simplicity,

and is stored inside, a single blo

» Transaction
blocks and i
operations :
- read(X) assig

- write(X) assig
buffer block.

- both these com
instruction before
resides is not alreac

» Transactions
- Perform read(X) while acce
- All subsequent accesses are t
- After last access, transaction execute

» output(B,) need not immediately foIIow wrlte()()
can perform the output operation when it deems

ty;tem

work ar
of T,

memory

) Modifying‘
that the t
the datab

» Consider t
from accou
to perform a

by 7;0r none
» Several output o
for 7; (to output A a
occur after one of these mo

been made but before all of them are
made.

Recovery and Atomicity (Cont.)

» To ensure atomicity despite failures, we first
output information describing the
modifications to stable storage without
modifying the database itself.

» We study two approaches:

- log-based recovery, and
- shadow-paging

» We assume (initially) that transactions run

serially, that is, one after the other.

Log-B
A log iT kept o

- The log is a se
activities on t

When transacti
<T,- start

Before T; execu

where V; is the
written to X.
- Log record notes

value V, before th

When T; finishes it las
written.

We assume for now that log
storage (that is, they are not bu
Two approaches using logs

- Deferred database modification

- Immediate database modification

The deferrec
modification:
partial comn

Assume that

Transaction st

A write(X) oper:

being written, w

- Note: old value is na

The write is not perfc

deferred.

}Nhen 7 partially commits, =

0g _
Finally, the log records are read and used to actually
execute the previously deferred writes.

Deferred Databas

' [(s;m Iea

heed sto
start> and

Redoing at
of all data
the new valt

Crashes can
> the transactiot
> while recovery ¢

example transac
before T7)):

T, read (A)
A -A-50
Write (A
read ()
B~ B+ 50
write (B

Deferred Database Moditication

<T, start> <T, start> <T, start>
<Ty, A, 950> <Ty, A, 950> <T,, A, 950>
<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>

<T, commit> <T, commit>

<T, start> <T, start>

<T;, C, 600> <T;, C, 600>
<T, commit>

If l0g O StaDTe StOTaU e SEtTIC OT CraST, 15 a5
case.

(@) No redo actions need to be taken
(b) redo(7,) must be performed since < T%commit> is present

(c) redo(7,) must be performed followed by redo(7;) since
<7, commit> and <7, commit> are present

Immedia

database ug

since undoi

old value and
Update log rec
item is written

We assume that
storage

Can be extended to pos
rior to execution or an c
, all log records correspondint
to stable storage “r_g
Output of updated blocks can take place at any time
before or arter transaction commit

Order in which blocks are output can be different
from the order in which they are written.

Log

< T, start>
<T, A, 1000, 95
7., B, 2000, 205

<71, commit>

<7, start>
<7, C, 700, 600>

<7, commit>

» Note: B, denotes block containing X.

Immediat

Ao R oo

- undo(7.
their ol vaI

0 redo(sets|
new values, c

Both operatio

- That is, even i
effect is the sar

Needed since op
When recovering

> Transaction 7; neec
record

<7;start>, but does no
Transactlon 7. needs to be re
record <7, start > and the reco

Undo operatlons are performed
operations.

I~C*"
5 ModiTic

Immediate D

Below we show

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<T0 commit> <T0 commit>
<T, start> <T, start>
<T,, C, 700, 600> <T,, C, 700, 600>
<T; commit>

@) b
set to 950 and 2050 respectively.
(¢) redo (7,) and redo (7;): A and B are set to 950 and 2050
respectively. Then Cis set to 600

