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Recovery Algorithms

» Recovery algorithms are techniques to ensure
database consistency and transaction
atomicity and durability despite failures
> Focus of this chapter

» Recovery algorithms have two parts

1. Actions taken during normal transaction
processing to ensure enough information exists to
recover from failures

2. Actions taken after a failure to recover the
database contents to a state that ensures
atomicity, consistency and durability
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Recovery and Atomicity (Cont.)

» To ensure atomicity despite failures, we first
output information describing the
modifications to stable storage without
modifying the database itself.

» We study two approaches:

- log-based recovery, and
- shadow-paging

» We assume (initially) that transactions run

serially, that is, one after the other.




Log-B
A log iT kept o

- The log is a se
activities on t

When transacti
<T,- start

Before T; execu

where V; is the
written to X.
- Log record notes

value V, before th

When T; finishes it las
written.

We assume for now that log
storage (that is, they are not bu
Two approaches using logs

- Deferred database modification

- Immediate database modification




The deferrec
modification:
partial comn

Assume that

Transaction st

A write(X) oper:

being written, w

- Note: old value is na

The write is not perfc

deferred.

}Nhen 7 partially commits, =

0g _
Finally, the log records are read and used to actually
execute the previously deferred writes.




Deferred Databas

' [(s;m Iea

heed sto
start> and

Redoing at
of all data
the new valt

Crashes can
> the transactiot
> while recovery ¢

example transac
before T7)):

T, read (A)
A -A-50
Write (A
read ()
B~ B+ 50
write (B




Deferred Database Moditication

<T, start> <T, start> <T, start>
<Ty, A, 950> <Ty, A, 950>  <T,, A, 950>
<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>

<T, commit> <T, commit>

<T, start> <T, start>

<T;, C, 600> <T;, C, 600>
<T, commit>

If l0g O StaDTe StOTaU e SEtTIC OT CraST, 15 a5
case.

(@) No redo actions need to be taken
(b) redo(7,) must be performed since < T%commit> is present

(c) redo(7,) must be performed followed by redo(7;) since
<7, commit> and <7, commit> are present
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< T, start>
<T, A, 1000, 95
7., B, 2000, 205

<71, commit>

<7, start>
<7, C, 700, 600>

<7, commit>

» Note: B, denotes block containing X.
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Below we show

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<T0 commit> <T0 commit>
<T, start> <T, start>
<T,, C, 700, 600> <T,, C, 700, 600>
<T; commit>

@) b
set to 950 and 2050 respectively.
(¢) redo (7,) and redo (7;): A and B are set to 950 and 2050
respectively. Then Cis set to 600




